Abstract

Covers with capillary barrier effects (CCBEs) are multi-layered oxygen barrier covers used in humid climates to reclaim reactive mine tailings and limit the generation of acid mine drainage. Once constructed, CCBEs are colonized by surrounding plants. Roots modify water storage and respire oxygen. The performance of CCBEs could evolve over time due to root colonization. Twenty-five plots with varying vegetation were investigated at a 17-year-old CCBE in the mixed forest of Quebec, Canada. Geotechnical parameters and root colonization of the moisture-retaining layer (MRL) of the CCBE were characterized. The performance of the MRL to control oxygen migration was assessed using oxygen consumption tests and numerical modeling. Despite root colonization at the surface of the MRL, oxygen fluxes generally complied with the CCBE’s design criteria. Root presence created oxygen consumption in the MRL, which could be expressed with a reactivity coefficient (Kr). A positive correlation (R2 = 0.65) was found between root length density and Kr. Oxygen consumption by root respiration helped to lower oxygen fluxes by 0.5 to 76 g/m2/year, with a mean of 13 g/m2/year. These results will help to better understand the influence of roots on CCBEs’ performance to control oxygen migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.