Abstract
Neuroscientists have emphasized visceral influences on consciousness and attention, but the potential neurophysiological pathways remain under exploration. Here, we found two neurophysiological pathways of heart-brain interaction based on the relationship between oxygen-transport by red blood cells (RBCs) and consciousness/attention. To this end, we collected a dataset based on the routine physical examination, the breaking continuous flash suppression (b-CFS) paradigm, and an attention network test (ANT) in 140 immigrants under the hypoxic Tibetan environment. We combined electroencephalography and multilevel mediation analysis to investigate the relationship between RBC properties and consciousness/attention. The results showed that RBC function, via two independent neurophysiological pathways, not only triggered interoceptive re-representations in the insula and awareness connected to orienting attention but also induced an immune response corresponding to consciousness and executive control. Importantly, consciousness played a fundamental role in executive function which might be associated with the level of perceived stress. These results indicated the important role of oxygen-transport in heart-brain interactions, in which the related stress response affected consciousness and executive control. The findings provide new insights into the neurophysiological schema of heart-brain interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.