Abstract

The O2-mediated oxidation of all-β-barrel ferrous nitrosylated nitrobindin from Arabidopsis thaliana (At-Nb(II)-NO), Mycobacterium tuberculosis (Mt-Nb(II)-NO), and Homo sapiens (Hs-Nb(II)-NO) to ferric derivative (At-Nb(III), Mt-Nb(III), and Hs-Nb(III), respectively) has been investigated at pH 7.0 and 20.0 °C. Unlike ferrous nitrosylated horse myoglobin, human serum heme-albumin and human hemoglobin, the process in Nb(II)-NO is mono-exponential and linearly dependent on the O2 concentration, displaying a bimolecular behavior, characterized by kon = (6.3 ± 0.8) × 103 M−1 s−1, (1.4 ± 0.2) × 103 M−1 s−1, and (3.9 ± 0.5) × 103 M−1 s−1 for At-Nb(II)-NO, Mt-Nb(II)-NO, and Hs-Nb(II)-NO, respectively. No intermediate is detected, indicating that the O2 reaction with Nb(II)-NO is the rate-limiting step and that the subsequent conversion of the heme-Fe(III)-N(O)OO− species (i.e., N-bound peroxynitrite to heme-Fe(III)) to heme-Fe(III) and NO3− is much faster. A similar mechanism can be invoked for ferrous nitrosylated human neuroglobin and rabbit hemopexin, in which the heme-Fe(III)-N(O)OO− species is formed as well, although the rate-limiting step seems represented by the reshaping of the six-coordinated heme-Fe(III) complex. Although At-Nb(II)-NO and Mt-Nb(II)-NO are partially (while Hs-Nb(II)-NO is almost completely) penta-coordinated, density functional theory (DFT) calculations rule out that the cleavage of the proximal heme-Fe-His bond in Nb(II)-NO is responsible for the more stable heme-Fe(III)-N(O)OO− species. Moreover, the oxidation of the penta-coordinated heme-Fe(II)-NO adduct does not depend on O2 binding at the proximal side of the metal center. These features may instead reflect the peculiarity of Nb folding and of the heme environment, with a reduced steric constraint for the formation of the heme-Fe(III)-N(O)OO− complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.