Abstract

Stoichiometric BaTiO3 ceramics fabricated from sol-gel-derived powders and sintered at temperatures ⩽1100°C are highly insulating and electrically homogeneous. At higher sintering temperatures, samples gradually lose oxygen and the conductivity increases as a consequence. The latter phenomena are very sensitive to the furnace atmosphere and are partially reversible during cooling when partial reoxidation can occur. This results in ceramics that are often electrically heterogeneous with insulating surfaces or grain boundaries but semiconducting grain cores. In samples that were heated at 1450°C in N2 and quenched, a positive temperature coefficient of resistance (PTCR) effect was observed, associated with an additional impedance arising from space-charge effects. These results demonstrate that, depending on sample processing, insulating cation-stoichiometric BaTiO3 can instead be semiconducting and under certain circumstances, exhibit a PTCR effect, without the need for donor dopant additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call