Abstract

Oxygen isotope fractionation is studied during the synthesis of kaolinite under controlled conditions of temperature and time. Equilibrium conditions have been established and its relationship with temperature has been studied. Kaolinite was hydrothermally precipitated starting from non-crystalline aluminosilicate gels. The amount of kaolinite obtained increases up to a limited constant value and in all cases coexists with the amorphous starting gels. It can be seen that the data obtained at 48 hours of synthesis can be considered as quasi-equilibrium, since the total isotopic equilibrium has not been reached, only the sample obtained at 24 hours should be discarded for studies in equilibrium. This would allow us, with the samples obtained at 720 hours, to try to establish a relationship between isotopic fractionation and temperature, provided that we know the water in equilibrium with the synthesized kaolinite. Two equations have been obtained that show correlation coefficients with a high statistical significance.

Highlights

  • Isotopic composition measurements on natural or synthetic systems can be used to stablish quantitative relationships between isotopic composition and temperature of the system [1] [2] [3] [4]

  • It can be seen that the data obtained at 48 hours of synthesis can be considered as quasi-equilibrium, since the total isotopic equilibrium has not been reached, only the sample obtained at 24 hours should be discarded for studies in equilibrium

  • The aim of this paper is to study the oxygen fractionation factors in the kaolinite-water system during the experimental synthesis of this mineral at different temperatures

Read more

Summary

Introduction

Isotopic composition measurements on natural or synthetic systems can be used to stablish quantitative relationships between isotopic composition and temperature of the system [1] [2] [3] [4]. Isotopic composition of clay minerals is a function of the temperature of formation and of the 18O/16O ratio of the ambient water. As long as the oxygen isotopic composition acquired by a clay mineral at the time of its formation remains unaltered, it can provide information con-.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.