Abstract

Recent and fossil (prehistoric, Natufian) gazelle bones, dentin and enamel were analyzed for their oxygen isotopic composition (δ18O) of the phosphate and carbonate, as well as their crystallinity. Fossil bones and dentin have better crystallinity than recent specimens, indicating diagenetic change. Fossil enamel, on the other hand, is identical in crystallinity to recent enamel, indicating the lack of diagenetic alteration. Comparison of δ18O of carbonate and phosphate of the skeletal elements suggests that the coexisting phosphate and carbonate of both the recent and fossil specimens are close to isotopic equilibrium. This might suggest that both phases were affected by the same degree of diagenetic alteration, and that comparison of their δ18O is not useful for the selection of pristine material for paleoclimatic reconstruction purposes. Oxygen isotope analysis of gazelle enamel from the Natufian period from Hayonim Cave, Israel, show depletion in δ18O in comparison with recent enamel. This depletion is interpreted to represent a colder and/or wetter climate in the Natufian of northern Israel. © 1999 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call