Abstract

Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO(3)(-) in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying delta(18)O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO(3)) with low delta(18)O and USGS35 (NaNO(3)) with high delta(18)O and 'mass-independent' delta(17)O. The procedure used to produce USGS34 involved equilibration of HNO(3) with (18)O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO(3)(-) reference materials with a range of delta(18)O values and normal (mass-dependent) (18)O:(17)O:(16)O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (alpha) between [NO(3)(-)] and H(2)O decreases with increasing temperature from 1.0215 at 22 degrees C to 1.0131 at 100 degrees C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high (17)O:(18)O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO(3) (-) isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO(3)(-) samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of +/-0.2-0.3 per thousand, 1sigma): IAEA-N3 has delta(18)O = +25.6 per thousand and delta(17)O = +13.2 per thousand; USGS32 has delta(18)O = +25.7 per thousand; USGS34 has delta(18)O = -27.9 per thousand and delta(17)O = -14.8 per thousand; and USGS35 has delta(18)O = +57.5 per thousand and delta(17)O = +51.5 per thousand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call