Abstract

AbstractRather than indicating formation/peak temperature, oxygen isotope fractionations preserved in mineral assemblages of slowly cooled plutonic and metamorphic rocks yield apparent equilibrium temperatures (Tae). The isotopic fractionations and Tae values deliver information about cooling history, as the extent of diffusive exchange of oxygen isotopes during cooling is controlled by the cooling time scale or cooling rate. Despite that several models, such as the Fast Grain Boundary (FGB) model, have been developed to simulate oxygen isotope exchange between coexisting minerals during cooling, extraction of cooling rate remains far from straightforward. On the other hand, there is a well‐defined quantitative relationship between the Dodson closure temperature (Tc) and the cooling rate, but Tc cannot be directly measured. Based on simulation results of existing models for a variety of rock systems, including open systems (with an infinite fluid reservoir), closed systems (with negligible fluid participation) and semi‐open systems (with moderate fluid participation), this study demonstrates that Tae of the mineral pair with the largest equilibrium isotope fractionation (PLEIF) is always bounded by their Tc values, regardless of how mineral proportions vary or how significant a role fluid has played in isotopic exchange. If the two Tc values happen to be similar, Tae will serve as a good approximation of both Tc, provided that the equilibrium fractionation factor has been precisely determined as a function of temperature. One such pair is quartz‐magnetite. By contrast, a mineral pair with similar Tc but relatively small fractionation is susceptible to the disturbance from other minerals, hence does not always have Tae confined within their Tc range. The relationship of Tae‐Tc correspondence for PLEIF with similar Tc can be used to constrain either cooling rate (i.e., as a speedometry method) or oxygen isotope diffusivity if one of them has been independently determined. In the latter case, the inferred oxygen diffusivity may be an index of water fugacity (i.e., as a hygrometry method) when compared with experimental diffusivity values measured under different fluid conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call