Abstract

Secondary minerals in SNC meteorites from Mars exhibit O isotope ratios believed to be consistent with the non-thermal escape of O from the atmosphere. The primary source of the non-thermal O is the dissociative- recombination of O2+ in the ionosphere. I present here the results of a model that accounts for the probability of escape of non-thermal O isotopes due to collisions with overlying CO2, combined with a model for Rayleigh fractionation of the atmosphere remaining as a result of O escape. Previous analyses of MAVEN number density data have shown a strong variability with latitude and season of the heights of the homopause and exobase, with a mean homopause at 110 km and a mean difference of about 60 km. Rayleigh model results demonstrate a dependence on homopause height and on temperature profile and require a more accurate calculation of fractionation factors for the Rayleigh equation. Isothermal temperature profiles yield much smaller variation in 17O with homopause height. These results demonstrate the need for a careful assessment of O isotope enrichment due to non-thermal escape both for the modern atmosphere and for the evolution of the atmosphere over the age of the planet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call