Abstract

Sm-Nd and oxygen isotope analyses were carried out for mineral separates of ultrahigh pressure eclogites from the Sulu terrane in eastern China. The results show a direct correspondence in equilibrium or disequilibrium state between the oxygen and Sm-Nd isotope systems of eclogite minerals. The omphacite-garnet pairs of oxygen isotope equilibrium at eclogite-facies conditions yield meaningful Triassic Sm-Nd isochron ages, whereas those of oxygen isotope disequilibrium give non-Triassic ages of geological meaninglessness. This can be reasonably interpreted by the fact that the rates of oxygen diffusion in garnet and pyroxene are lower than, or close to, those of Nd diffusion, and thus attainment of isotopic equilibrium in the omphacite-garnet O system suggests achievement of Nd isotope equilibrium in the same mineral pairs. The presence or absence of fluid in the eclogite protoliths is a major rate-controlling factor for isotopic equilibration during high-grade metamorphism. It appears that the state of oxygen isotope equilibrium between cogenetic minerals can provide a critical test for the validity of the Sm-Nd mineral chronometer. In addition, the exact timing of the ultrahigh pressure metamorphism in the Dabie-Sulu terranes is constrained at Early Triassic rather than Late Triassic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.