Abstract
We have measured the δ18O values of the major phenocrysts (olivine, clinopyroxene and plagioclase) present in lavas from Tristan da Cunha and Gough Island. These islands, which result from the same mantle plume, have enriched radiogenic isotope ratios and are, therefore, prime candidates for an oxygen isotope signature that is distinct from that of MORB. Consistent differences between the δ18O values of olivine, pyroxene and feldspar in the Gough lavas show that the phenocrysts in the mafic Gough Island lavas are in oxygen isotope equilibrium. The olivines in lavas with SiO2 48 wt% contain phenocrysts which have δ18O values that are systematically ∼0.3‰ lower than their counterparts from Gough. We suggest that the parental mafic Tristan magmas were contaminated by material from the volcanic edifice that acquired low δ18O values by interaction with water at high temperatures. The highly porphyritic SiO2-poor lavas show a negative correlation between olivine δ18O value and whole-rock silica content rather than the expected positive correlation. The minimum δ18O value occurs at an SiO2 content of about 45 wt%. Below 45 wt% SiO2, magmas evolved via a combination of assimilation, fractionational crystallization and crystal accumulation; above 45 wt% SiO2, magmas appeared to have evolved via closed-system fractional crystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.