Abstract

Inorganic materials with layered perovskite structures have a wide range of physical and chemical properties. Layered perovskites based on BaLanInnO3n+1 (n = 1, 2) were recently investigated as protonic conductors. This work focused on the oxygen ion and proton transport (ionic conductivity and mobility) in alkali-earth (Sr2+, Ba2+)-doped layered perovskites based on BaLa2In2O7. It is shown that in the dry air conditions, the nature of conductivity is mixed oxygen–hole, despite the dopant nature. Doping leads to the increase in the conductivity values by up to ~1.5 orders of magnitude. The most proton-conductive BaLa1.7Ba0.3In2O6.85 and BaLa1.7Sr0.15In2O6.925 samples are characterized by the conductivity values 1.2·10−4 S/cm and 0.7·10−4 S/cm at 500 °C under wet air, respectively. The layered perovskites with Ruddlesden-Popper structure, containing two layers of perovskite blocks, are the prospective proton-conducting materials and further material science searches among this class of materials is relevant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.