Abstract

We investigated the interaction of oxygen with the Pd(112) surface from ultrahigh vacuum up to 5 mbars oxygen partial pressure in a temperature range from 523 to 673 K. We combined in situ surface x-ray diffraction with scanning tunneling microscopy, high-resolution core-level spectroscopy, and low-energy electron diffraction. A structural model of the clean Pd(112) is proposed based on the x-ray-diffraction data. The morphology of the Pd(112) surface is strongly influenced by the oxidation conditions: at 673 K, upon exposure to oxygen at pressures from $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$ to $5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ mbar, the (112) surface undergoes a massive rearrangement and (113)- and (335)-type facets are formed. Further increase of the O${}_{2}$ partial pressure leads to a new rearrangement into (111)- and (113)-type facets. This is in contrast to the previous observation that (112) facets are stabilized on MgO supported Pd nanoparticles under oxygen exposure [P. Nolte, A. Stierle, N. Kasper, N. Y. Jin-Phillipp, N. Jeutter, and H. Dosch, Nano Lett. 11, 4697 (2011)]. Based on the core-level spectroscopy and scanning tunneling microscopy measurements, the transition from chemisorbed oxygen to surface oxide formation was identified to take place at pressures of 10${}^{\ensuremath{-}3}$ mbar O${}_{2}$ and 623 K. Kinetic barriers for the formation of the PdO bulk oxide are observed to be reduced compared to low index Pd surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.