Abstract
Solid-state [2+2] photochemical cycloaddition reactions have been extensively studied after the classical work of Schmidt in the 1960s. Of these, trans-1,2-bis(4'-pyridyl)ethylene (bpe) is one of the well-studied alkenes to synthesize tetrakis(4-pyridyl)cyclobutane (tpcb). However, almost all the solid-state [2+2] cycloaddition reactions of bpe yielded, almost exclusively, one of the four possible isomers, namely, the rctt-tpcb (r=regio c=cis and t=trans). Here we describe a stereoselective synthesis of the tetrahedrally disposed rtct-tpcb by the solid-state thermal isomerization of the rctt-isomer in atmospheric air. We propose that this isomerization occurs through a topochemical unimolecular mechanism by a radical chain pathway, initiated by molecular oxygen. This is supported by the nature of products formed in air and nitrogen, detection of a radical in ESR spectral studies, ESI-MS crossover experiments, VT PXRD studies along with QM, MD and docking calculations. The formation of a unique isomer by thermal isomerization may be a general phenomenon to quantitatively synthesize other useful stereoisomers from the existing isomers of cyclobutane derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.