Abstract

Oxygen vacancies in oxides nanostructures are the origin of many intriguing phenomena. We have studied the influence of the oxygen pressure in the tunneling properties of a ferroelectric barrier, Ba0.25Sr0.75TiO3 (BSTO), grown over a ferromagnetic electrode. A phenomenological model description was used to obtain critical information about the structure and electrical properties of ultra-thin BSTO layers using conductive atomic force microscopy. The BSTO layers present good insulation properties. Reducing the oxygen content increases the conductivity of the samples. The tunneling of the current carriers is probably the main conduction mechanism for samples with higher barrier thicknesses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.