Abstract

Breathing of 100% oxygen was used to challenge vascular autoregulation in 14 mice with either osteosarcomas ( n = 6) or mammary carcinomas ( n = 8). Reproducible and statistically significant signal intensity changes of –29 ± 6% to +35 ± 3% were observed on heavily T 2∗-weighted images in the tumors during the oxygen challenge. No significant changes were observed in muscle. For the mammary carcinomas a higher percentage of tumor voxels showed significant signal-intensity decrease (31 ± 8%) compared to the percentage of voxels showing a signal-intensity increase (22 ± 3%). In contrast, for the osteosarcomas, a higher percentage of tumor voxels showed signal-intensity increase (52 ± 9%) compared to the percentage of voxels showing signal-intensity decrease (27 ± 9%). The regional distribution of these signal intensity changes did not correlate with the signal pattern on T 1-, T 2-,and T 2∗-weighted and Gd-DTPA enhanced images acquired without breathing 100% oxygen. Most likely, the signal intensity changes represented the inability of the tumor’s neovascularization for autoregulation during the oxygen challenge, particularly in hypoxic regions. Although further investigation is needed, the findings that malignant tumor tissue showed signal intensity changes, whereas normal muscle tissue did not, suggests that this technique may prove useful in distinguishing benign from malignant tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.