Abstract

While surface-confined Ullmann-type coupling has been widely investigated for its potential to produce π-conjugated polymers with unique properties, the pathway of this reaction in the presence of adsorbed oxygen has yet to be explored. Here, the effect of oxygen adsorption between different steps of the polymerization reaction is studied, revealing an unexpected transformation of the 1D organometallic (OM) chains to 2D OM networks by annealing, rather than the 1D polymer obtained on pristine surfaces. Characterization by scanning tunneling microscopy and X-ray photoelectron spectroscopy indicates that the networks consist of OM segments stabilized by chemisorbed oxygen at the vertices of the segments, as supported by density functional theory calculations. Hexagonal 2D OM networks with different sizes on Cu(111) can be created using precursors with different length, either 4,4″-dibromo-p-terphenyl or 1,4-dibromobenzene (dBB), and square networks are obtained from dBB on Cu(100). The control over size and symmetry illustrates a versatile surface patterning technique, with potential applications in confined reactions and host-guest chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call