Abstract

Optimum time points for oxygen-glucose deprivation (OGD) and re-oxygenation have been identified to suggest the suitability of PC-12 cells as rapid and sensitive in vitro model of cerebral stroke. Further, the precise role of glucose as one of the limiting factors was ascertained. PC-12 cells were subjected to receive OGD of 1–8 h followed by re-oxygenation for 6 to 96 h in medium having glucose 0–10 mg/ml. Loss of cell viability was assessed using trypan blue dye exclusion and MTT assays. The significant (p < 0.05) reduction in percent viable cell count was started at 2 h of OGD (80.7 ± 2.0) and continued in further OGD periods (3, 4, 5, 6, 7, and 8 h), i.e. 65.7 ± 3.5, 59.7 ± 4.6, 54.3 ± 3.2, 44.7 ± 2.9, 20.3 ± 4.3, 5.7 ± 2.0 of counted cells, respectively. Cells growing in glucose-free medium have shown a gradual (p < 0.001) decrease in cell viability throughout the re-oxygenation. Re-oxygenation of 24 h was found to be first statistically significant time point for all the glucose concentrations. Glucose concentration during re-oxygenation was found to be one of the key factors involved in the growth and proliferation in PC-12 cells. The OGD of 6 h followed by a re-oxygenation period of 24 h with 4–6 mg/ml glucose concentration could be recorded as optimum conditions under our experimental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.