Abstract

Cell replacement therapies hold the potential to restore neuronal networks compromised by neurodegenerative diseases (such as Parkinson's disease or Huntington's disease), or focal tissue damage (via a stroke or spinal cord injury). Despite some promising results achieved to date, transplanted cells typically exhibit poor survival in the central nervous system, thus limiting therapeutic efficacy of the graft. Although cell death post-transplantation is likely to be multifactorial in causality, growing evidence suggests that the lack of vascularisation at the graft site, and the resulting ischemic host environment, may play a fundamental role in the fate of grafted cells. Herein, we summarise data showing how the deprivation of either oxygen, glucose, or both in combination, impacts the survival of neurons and review strategies which may improve graft survival in the central nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call