Abstract

In this article, we first propose a novel type of oxygen gas optrode by forming fluorophore doped sensing film in the array microholes with the characteristics of microstructured optical fiber (MOF) segment. Comparing with the conventional O 2 detecting method, this slender shaped optrode shows potential in trace amount of O 2 sensing and online O 2 monitoring. Organical silicate gel or plastified cellulose acetate are chosen as sensing films and tris (4,7-diphenyl-1,10-phenathroline) ruthenium(II) dichloride ([Ru(dpp) 3]Cl 2) or meso-tetraphenylporphyin (TPP) as quenching fluorophores. From the experimental results, we find [Ru(dpp) 3] 2+–Gel–MOF optrode has favorable sensing characteristics, and the Stern–Volmer plots are linear in the full concentration range of O 2 (0–100% v/v). The ratio of I 0/I 100, where I 0 and I 100 respectively represents the fluorescence intensities of the optrode exposed to 100% N 2 and 100% O 2, as a sensitivity of the optrode is 10.8. Simultaneously, the optrode can make a quick response within 50 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call