Abstract

Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies. Key Words: Oxygen-free biochemistry-Titan-Hydrocarbons-Hydrogen cyanide-Nitriles. Astrobiology 17, 1173-1181.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call