Abstract

Oxygen and phosphate measurements from two sections across the Norwegian Atlantic Current, the Gimsoy-NW section from 67.5°N 9°E to 71.5°N 1°E and the Bjornoya-W section along 74.5°N from 7 to 15°E, are used to estimate oxygen fluxes in the surface layer and between the atmosphere and the ocean. Vertical entrainment velocities of 0.9 m day−1 for the winter season and 0.1 m day−1 for the summer season are found and applied to the upper 300 m. The resulting oxygen fluxes to the surface layer driven by this vertical mixing are 0.58±0.05 and 0.27±0.02 mol O2 m−2 year−1 at the Gimsoy-NW and Bjornoya-W sections, respectively. Oxygen fluxes to the surface layer due to phytoplankton production are 2.6 and 3.4 mol O2 m−2 year−1, which represent the net community production at the two sections. Estimated uncertainties in these numbers are ±15%. The surface water is a sink for atmospheric oxygen during fall and winter and a source during the productive season for both sections. On an annual basis there is a net uptake of oxygen from the atmosphere, 3.4±0.4 mol O2 m−2 year−1 at the Gimsoy-NW section and 4.9±0.5 mol O2 m−2 year−1 at the Bjornoya-W. A decrease in temperature of 1°C to 1.5°C seen between the Gimsoy-NW section and the Bjornoya-W section is the main reason for the increased atmospheric flux of oxygen at the latter section. An oxygen budget made for the area bounded by the two sections gives a net advective flux of oxygen out of the area of approximately 10 mol O2 m−2 year−1. The increased concentration of oxygen corresponding to the decrease in surface layer temperatures going northwards in the Norwegian Atlantic Current is mainly attributed to the air–sea oxygen exchange and phytoplankton production in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.