Abstract
The urgent demand for high-performance energy storage components has been driving the exploration for superior battery-type electrode materials for hybrid supercapacitors, which is challenging but of considerable significance. In this paper, a one-step pyrolysis route was elaborated to prepare oxygen-enriched hierarchical porous carbon supported Co-Ni nanoparticles Co-Ni/OHPCs) by facile self-crosslinking assisted high internal phase emulsion (HIPE) templating. The oxygen-enriched porous carbon framework provides large specific surface area and structural stability, meanwhile Co doping can significantly reinforce the electrochemical performance of the Co-Ni/OHPCs battery-type electrodes. By optimizing the ratio of Ni2+ to Co2+ ions, the obtained Co-Ni/OHPC electrodes exhibited excellent electrochemical performance of 817.3 F g−1 at a scan rate of 5 mV s−1. Furthermore, coupling with an activated porous carbon anode, the assembled hybrid supercapacitor (HSC) possessed an appreciable energy density of 66.94 Wh kg−1 at 409.9 W kg−1 and a capacitance retention ratio of 73.89% after 5000 cycles, showing considerable application prospects. This structural design strategy provides new inspiration for the reasonable optimization of new electrode materials for promising hybrid supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.