Abstract

Graphene and its derivatives have sparked intense research interest in wearable temperature sensing due to their excellent electric properties, mechanical flexibility, and good biocompatibility. Despite these advantages, the weak temperature dependence of charge transport makes them difficult to achieve a highly sensitive temperature response, which is one of the remaining bottlenecks in the progress towards practical applications. Unfortunately, detailed knowledge about the key factors of the charge transport temperature dependence in this material that determines the critical performance of electrical sensors is very limited up to now. Here, we reveal that oxygen absorption on the ultrathin reduced graphene oxide (RGO) films (∼3 nm) can significantly increase their conductance activation energy over 200% and thus greatly improve the temperature dependence of thermal-activated charge transport. Further investigations suggest that oxygen introduces the deep acceptor states, distributed at an energy level ∼0.175 eV from the valence-band maximum, which allows a highly temperature-dependent impurity ionization process and the resulting vast holes release in a wide temperature range. Remarkably, our temperature sensors based on oxygen-doped ultrathin RGO films show a high sensitivity with temperature conductive coefficient of 14.58% K−1, which is one order of magnitude higher than the reported CNT or graphene-based devices. Moreover, the ultrathin thickness and high thermal conductivity of RGO film allow an ultrafast response time of ∼86 ms, which represents the best level of temperature sensors based on soft materials. Profiting from these advantages, our sensors show good capacity to identify the slight temperature difference of human body, monitor respiratory rate, and detect the environmental temperature. This work not only represents substantial performance advances in temperature sensing, but also provides a new approach to modulate the charge transport temperature dependence, which could be benefited to both device design and fundamental research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call