Abstract

In this study, oxygen-doped graphitic carbon nitride (g-C3N4), named O-g-C3N4, was successfully fabricated and characterized, and its performance in activating peroxymonosulfate (PMS, HSO5−) for the removal of phenol, 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA), rhodamine B (RhB), reactive brilliant blue (RBB) and acid orange 7 (AO7) was evaluated. The catalytic performance of O-g-C3N4 for AO7 removal increased by 14 times compared to g-C3N4. In the presence of 0.2 g L−1 O-g-C3N4, 3.5 mM PMS at natural pH 5.8, 96.4% of AO7 could be removed in 60 min, reduced toxicity of the treated AO7 solution was obtained, and the mineralization efficiency was 47.2% within 120 min. Density functional theory (DFT) calculations showed that the charge distribution changed after oxygen doping, and PMS was more readily adsorbed by O-g-C3N4 with the adsorption energy (Eads) of −0.855 kcal/mol than that of the pristine g-C3N4 (Eads: −0.305 kcal/mol). Mechanism investigation implied that AO7 was primarily removed by the sulfate radicals (SO4•−) and hydroxyl radicals (•OH) on the surface of O-g-C3N4, but the role of singlet oxygen (1O2) to AO7 elimination was negligible. The results of cyclic experiments and catalyst characterization after reaction confirmed the favorable catalytic activity and structural stability of O-g-C3N4 particles. Furthermore, the O-g-C3N4/PMS system was very resistant to most of the environmental impacts, and AO7 removal was still acceptable in natural water environment. This study may provide an efficient metal-free carbonaceous activator with low dosage for PMS activation to remove recalcitrant organic pollutants (ROPs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call