Abstract

Gallium nitride quantum dots (GaN QDs), as a third-generation semiconductor material, are usually synthesized through a vapor deposition method at an elevated temperature (typically ≥800 °C). Thermal injection method is rarely reported for the synthesis of GaN QDs due to the lack of active precursors and the require of harsh reaction conditions. Here, we report the fabrication of oxygen doped colloidal GaN QDs via rapid thermal injection. By screening the reaction temperature and solvent, well-dispersed GaN QDs with a size of 3.8 nm were obtained in octadecylamine (ODA) at 360 °C. The synthesized GaN QDs show blue emission, the maximum emission wavelength is about 440 nm, and the photoluminescence quantum yield is 14.3%. Furthermore, we reveal the donor-acceptor mechanism of blue emission from GaN QDs. During the growth of GaN QDs, oxygen atoms occupy some nitrogen sites and produce a shallow oxygen donor energy level (ON). A part of the ON can be combined with the adjacent gallium vacancy (VGa) to form a VGa-ON acceptor, whose energy level is about 0.98 eV above the valence band of GaN QDs. The transition of excited electrons from the donor (ON) to the acceptor (VGa-ON) is responsible for the blue emission of GaN QDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call