Abstract
We emphasize the importance of the new design concept for diffusion barriers in high-density memory capacitors. RuTiN and RuTiO films are proposed as sacrificial oxygen diffusion barriers. They showed much lower sheet resistance up to 800 °C than various barriers including binary and ternary nitrides, reported by others. The contact resistance for both the Pt/RuTiN/TiSix/n++poly-plug/n+channel layer/Si and the Pt/RuTiO/RuTiN/TiSix/n++poly-plug/n+channel layer/Si contact structures, the most important electrical parameter for the diffusion barrier in the bottom-electrode structure of capacitors, exhibited values as low as 5 kΩ, even after annealing up to 750 °C. When each RuTiN and TiN film is inserted as a glue layer between the bottom electrode Pt layer in the CVD–BST simple stack-type structure, the thermal stability of the RuTiN glue layer is observed to be 150 °C higher than that of the TiN glue layer. Moreover, the capacitance of the PVD–BST simple stack-type structure with a TiN glue layer initially degrades after annealing at 500 °C, and thereafter failed completely. In the case of RuTiN and the RuTiO/RuTiN glue layers, however, the capacitance continuously increased up to 550 °C. These new experimental results accommodate the introduction of the sacrificial design concept of diffusion barriers against oxygen in high-density memory capacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics A: Materials Science & Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.