Abstract

Effects of nitric oxide (NO) and NO generating agents, on the electron transport system of mitochondria were examined in a study of the mechanism and physiological importance of NO in energy metabolism. In the presence of various substrates, uncoupled respiration was inhibited by NO in manner which was both dose- and oxygen tension-dependent. Simultaneously measuring changes in cytochrome absorption spectra and respiration showed that the site of action of NO is cytochrome oxidase. Similar inhibition was also brought about by 1-hydroxy-2-oxo-3,3-bis(2-aminoethyl)-1-triazene (NOC 18), an NO donor. Electron paramagnetic resonance (EPR) analysis revealed that inhibition of uncoupled respiration occurred only during the presence of NO in the reaction mixture. The inhibitory effect of NO was increased significantly by lowering the concentration of mitochondrial protein. No appreciable inhibition of respiration was observed in the presence of 3-morpholinosydnonimine (SIN-1), a peroxynitrite anion (ONOO-) generating reagent, but inhibition did occur in the presence of superoxide dismutase (SOD). These results indicate that NO reversibly interacts with mitochondria at complex IV thereby inhibiting respiration particularly under physiologically low oxygen tension and that de novo generated ONOO may have no significant effect under the present experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.