Abstract

Two southern pine kraft pulps with kappa numbers of 30.0 (SW1-0) and 48.0 (SW2-0) were oxygen delignified by 30–60% by varying the reaction temperature (78–110°C) and charge of sodium hydroxide (1.6–4.4%). O-bleachability was found to be correlated to the incoming kappa number and charge of sodium hydroxide employed. In general, a lower charge of caustic and a higher brownstock kappa number improved pulp bleachability. The residual lignin in the brownstocks and O-delignified kraft pulp samples was isolated and characterized by 13C and 31P NMR. 13C NMR analysis of the residual lignin samples indicated that the post-oxygen delignified pulps were enriched with α-carbonyl groups and carboxylic acid groups. The content of β-O-aryl structures was increased by 23–36% depending on the extent of oxygen delignification. The post-oxygen delignified pulps were also shown to have increased substituted aryl carbons. 31P NMR indicated that the relative content of condensed phenolic units increased by 9–20% after the oxygen delignification, depending on the severity of the O-stage. This observation was probably due to the accumulation or formation of 5,5-biphenyl structures in the process. The physical strength properties of brownstock and post-oxygen delignified pulps were assessed in terms of zero-span strength, tensile strength, tear strength, and burst strength. Oxygen delignification led to a slight increase in the curls and kinks of the pulp fibers. The O-stage was shown to cause a 4.8–15.6% decrease in zero-span strength. In contrast, oxygen delignification increased tensile strength. This result could be explained as the improvement of fiber bonding after the oxygen bleaching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call