Abstract

The design of electrocatalysts for the hydrogen evolution reaction (HER) that perform effectively across a broad pH spectrum is paramount. The efficiency of hydrogen evolution at ruthenium (Ru) active sites, often hindered by the kinetics of water dissociation in alkaline or neutral conditions, requires further enhancement. Metal oxides, due to superior electron dynamics facilitated by oxygen vacancies (OVS) and shifts in the Fermi level, surpass carbon-based materials. In particular, tungsten oxide (WO3) promotes the directed migration of electrons and protons which significantly activates the Ru sites. Ru/WO3-OV is prepared through a simple hydrothermal and low-temperature annealing process. The prepared catalyst achieves 10 mA cm−2 at overpotentials of 23 mV (1 M KOH), 36 mV (0.5 M H2SO4), 62 mV (1 M PBS), and 38 mV (1 M KOH + seawater). At an overpotential corresponding to 10 mA cm−2 in 1 M KOH and 1 M KOH + seawater, the mass activity of Ru/WO3-OV is about 7.7 and 7.86 times that of 20 wt% Pt/C. The improvement in activity and stability arises from electronic modifications attributed to metal-support interaction. This work offers novel insights for modulating the HER activity of Ru sites across a wide pH range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call