Abstract

It is still a great challenge to reasonably design green, low cost, high activity and good stability catalysts for overall water splitting (OWS). Here, we introduce a novel catalyst with ferric niobate (FeNbO4) in-situ growing in honey-derived porous carbon of high specific surface area, and its catalytic activity is further enhanced by micro-regulation (oxygen vacancy and N-doping). From the experimental results and density functional theory (DFT) calculations, the oxygen vacancy in catalyst FeNbO4-x@NC regulates the local charge density of active site, thus increasing conductivity and optimizing hydrogen/oxygen species adsorption energy. FeNbO4 in-situ grows within N-doping honey-derived porous carbon, which can enhance active specific surface area exposure, strengthen gaseous substances escape rate, and accelerate electrons/ions transfer and electrolytes diffusion. Moreover, in-situ Raman also confirms O-species generation in oxygen evolution reaction (OER). As a result, the catalyst FeNbO4-x@NC shows good electrochemical performance in OER, HER and OWS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call