Abstract

The magnetic and crystal structures of anion-deficient La0.7Sr0.3MnO3−d manganites (d = 0.15 and 0.20) are studied by neutron diffraction in the range of high pressures 0–5 GPa and temperatures 10–300 K. It is found that a spin-glass state forms in La0.7Sr0.3MnO2.85 below Tg ∼ 50 K, while magnetic phase separation is observed in La0.7Sr0.3MnO2.80, which is characterized by the coexistence of AFM domains of the C type with spin-glass domains. As distinct from the stoichiometric A0.5Ba0.5MnO3 manganites (A = Nd, Sm), in which the high-pressure effect suppresses the spin-glass state and gives rise to ferromagnetism, the spin-glass state in La0.7Sr0.3MnO2.85 is stable under pressure. The bulk modulus of La0.7Sr0.3MnO2.85 is considerably smaller than that for the stoichiometric La0.7Sr0.3MnO3 compound. The causes of the formation of different types of the magnetic structure in La0.7Sr0.3MnO3−d (d = 0.15 and 0.20) and different high-pressure effects on the magnetic structure of stoichiometric and anion-deficient manganites are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.