Abstract

Control over the type and concentration of functional groups on carbon nanotubes (CNTs) require the use of reliable and sensitive analytical methods to detect, identify and quantify the functionalities on the material. Here we report the results of the selective quantification of aldehyde (together with ketone), carboxylic, and alcohol groups on arc-produced multiwalled carbon nanotubes (MWCNTs) using fluorescent labeling of surface species (FLOSS), combined with surface area and thermogravimetric analysis. The high sensitivity of the fluorescence spectroscopy combined with the selectivity of the chemistry of covalent attachment, allowed us to determine that as-produced MWCNTs contain ∼1.1at.% carboxylic groups, ∼2.0at.% aldehydes (and ketones) and <2.0at.% hydroxyls. Surprisingly, and contrary to the behavior of single walled carbon nanotubes, these concentrations do not appear to increase for acid purified MWCNTs but rather decrease to 0.4at.% for carboxylic groups; 1.6at.% for aldehydes (and ketones) and <3.0at.%, for hydroxyls. Possible explanations for the observation that the acid purified MWCNTs have a lower level of the functionalities compared to the as-produced material are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.