Abstract

SUMMARY. 1. The overlying water of intact sediment cores was constantly stirred with an impeller at a rate sufficient to mix turbulently the water column and maintain the diffusive boundary layer at a determined thickness. The system allowed standardization of water circulation in laboratory sediment core experiments.2. Both oxygen concentration and oxygen penetration depth in the sediments decreased, the former by 70% and the latter from 4.2 mm to 2.0 mm, when the overlying water was not stirred for 24 h, as measured with oxygen microelectrodes in a lake sediment core.3. Oxygen profiles measured in sediment cores in the laboratory were similar to those measured in situ when the overlying water was stirred with an impeller at such a rate that a similar thickness of the diffusive boundary layer at the sediment‐water interface developed in the laboratory as that in situ.4. Sediment oxygen consumption was calculated from: (1) measured oxygen profiles in the diffusive boundary layer and the molecular diffusion coefficient for oxygen in water; (2) the measured oxygen decrease in the top of the sediments and the estimated diffusion coefficient in the sediment; and (3) by oxygen differences in the overlying water after incubation of sediment cores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.