Abstract

Oxygen-dependent preservation has been proposed to protect liver grafts from ischemia-reperfusion injury (IRI), but its underlying mechanism remains elusive. Here, we proposed an oxygen-carrying sequential preservation (OCSP) method that combined oxygenated static cold storage (SCS) and normothermic mechanical perfusion. We demonstrated that OCSP, especially with high oxygen partial pressure level (500-650mmHg) during the oxygenated SCS phase, was associated with decreased IRI of liver grafts and improved rat survival after transplantation. A negative correlation between autophagy and endoplasmic reticulum stress response (ERSR) was found under OCSP and functional studies indicated OCSP suppressed ERSR-mediated cell apoptosis through autophagy activation. Further data showed that OCSP-induced autophagy activation and ERSR inhibition were oxygen-dependent. Finally, activated NFE2L2-HMOX1 signaling was found to induce autophagy under OCSP. Together, our findings indicate oxygen-dependent autophagy mitigates liver graft's IRI by ERSR suppression and modulates NFE2L2-HMOX1 signaling under OCSP, providing a theoretical basis for liver preservation using a composite-sequential mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.