Abstract

Pb–Zn deposits are widespread and common in various parts of the Taurus Belt. Most of the deposits are of pyrometasomatic and hydrothermal origin. The Keban Pb–Zn deposits are located along the intrusive contact between the Paleozoic – Lower Triassic Keban Metamorphic Formation and the syenite porphyry of the Upper Cretaceous Keban igneous rocks. Various studies have already been carried out; using fluid inclusion studies on fluorite, calcite and quartz on the pyrite–chalcopyrite bearing Keban ore deposits. This study focuses on the interpretation of stable isotope compositions in connexion with fluid inclusion data. Sulphur isotope values (δ 34S) of pyrite are within the range of −0.59 to +0.17‰ V-CDT ( n = 10). Thus, the source of sulphur is considered to be magmatic, as evidenced by associated igneous rocks and δ 34S values around zero“0”. Oxygen isotope values δ 18O of quartz vary between +10.5 and +19.9‰ (SMOW). However, δ 18O and δ 13C values of calcite related to re-crystallized limestone (Keban Metamorphic Formation) reach up to +27.3‰ (SMOW) and +1.6‰ (PDB), respectively. The δ 34S, δ 13C and δ 18O values demonstrate that skarn-type Pb–Zn deposits formed within syeno-monzonitic rocks and calc-schist contacts could have developed at low temperatures, by mixing metamorphic and meteoric waters in the final stages of magmatism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.