Abstract

Electrocatalytic reduction of nitric oxide (NO) to ammonia (NH3 ) is a promising approach to NH3 synthesis. However, due to the lack of efficient electrocatalysts, the performance of electrocatalytic NO reduction reaction (NORR) is far from satisfactory. Herein, it is reported that an atomic copper-iron dual-site electrocatalyst bridged by an axial oxygen atom (OFeN6 Cu) is anchored on nitrogen-doped carbon (CuFe DS/NC) for NORR. The CuFe DS/NC can significantly enhance the electrocatalytic NH3 synthesis performance (Faraday efficiency, 90%; yield rate, 112.52µmolcm-2 h-1 ) at -0.6V versus RHE, which is dramatically higher than the corresponding Cu single-atom, Fe single-atom and all NORR single-atom catalysts in the literature so far. Moreover, an assembled proof-of-concept Zn-NO battery using CuFe DS/NC as the cathode outputs a power density of 2.30mWcm-2 and an NH3 yield of 45.52µgh-1 mgcat -1 . The theoretical calculation result indicates that bimetallic sites can promote electrocatalytic NORR by changing the rate-determining step and accelerating the protonation process. This work provides a flexible strategy for efficient sustainable NH3 synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call