Abstract

The probability that an oxygen particle will reach a time dependent boundary is required in oxygen transport studies involving solution methods based on probability considerations. A Volterra integral equation is presented, the solution of which gives directly the boundary crossing probability density function. The boundary crossing probability is the probability that the oxygen particle will reach a boundary within a specified time interval. When the motion of the oxygen particle may be described as strongly Markovian, then the Volterra integral equation can be rewritten as a generalized Abel equation, the solution of which has been widely studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.