Abstract

Reactions of (18)O2 with self-assembled monolayer (SAM) films of 1-dodecanethiol, 1-octadecanethiol, 1-butanethiol, and benzyl mercaptan chemisorbed on gold were studied by the electron stimulated desorption (ESD) of anionic fragments over the incident electron energy range 2-20 eV. Dosing the SAMs with (18)O2 at 50 K results in the ESD of (18)O(-) and (18)OH(-). Electron irradiation of samples prior to (18)O2 deposition demonstrates that intensity of subsequent (18)O(-) and (18)OH(-) desorption signals increase with electron fluence and that in the absence of electron preirradiation, no (18)O(-) and (18)OH(-) ESD signals are observed, since oxygen is unable to bind to the SAMs. A minimum incident electron energy of 6-7 eV is required to initiate the binding of (18)O2 to the SAMs. O2 binding is proposed to proceed by the formation of CHx-1(•) radicals via resonant dissociative electron attachment and nonresonant C-H dissociation processes. The weaker signals of (18)O(-) and (18)OH(-) from short-chain SAMs are related to the latter's resistance to electron-induced damage, due to the charge-image dipole quenching and electron delocalization. Comparison between the present results and those for DNA oligonucleotides self-assembled on Au (Mirsaleh-Kohan, N. et al. J. Chem. Phys. 2012, 136, 235104) indicates that the oxygen binding mechanism is common to both systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.