Abstract
Mitochondria are energy factories of cells and important targets for methylmercury chloride (MgHgCl). Methylmercury (MeHg) is a well-known environmental toxicant that bioaccumulates in fish and shellfish. It readily crosses the placental barrier, making it a threat to correct fetal development. Despite being comprehensively investigated for years, this compound has not been assessed for its in vitro mitochondrial toxicity under different oxygen conditions. In this study, human induced pluripotent stem cells (hiPSCs) were used to evaluate the dependence of the expression of genes associated with pluripotency and mitochondria on atmospheric (21% O2) and low (5% O2) oxygen concentrations upon MeHgCl treatment. We showed that the toxicity of MeHgCl was strongly related to an increased mtDNA copy number and downregulation of the expression of an mtDNA replication and damage repair-associated gene POLG1 (Mitochondrial Polymerase Gamma Catalytic Subunit) in both tested oxygen conditions. In addition, the viability and mitochondrial membrane potential of hiPSCs were significantly lowered by MeHgCl regardless of the oxygen concentration. However, reactive oxygen species accumulation significantly increased only under atmospheric oxygen conditions; what was associated with increased expression of TFAM (Transcription Factor A, Mitochondrial) and NRF1 (Nuclear Respiratory Factor 1) and downregulation of PARK2 (Parkin RBR E3 Ubiquitin Protein Ligase). Taken together, our results demonstrated that MeHgCl could induce in vitro toxicity in hiPSCs through altering mitochondria-associated genes in an oxygen level-dependent manner. Thus, our work suggests that oxygen should be considered a factor was modulating the in vitro toxicity of environmental pollutants. Typical atmospheric conditions of in vitro culture significantly lower the predictive value of studies of such toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.