Abstract

The kinetics of oxygen and hydrogen gas recombination on the metal hydride electrode in a NiMH cell is investigate as function of gas pressure, temperature, cycling and a hydrophobic additive. Both oxygen and hydrogen gas recombination rates in the NiMH cells are found to be linearly proportional to the gas pressure, indicating that surface processes with a constant number of reaction sites could be the rate limiting step. The rate of oxygen gas recombination is, however, more than 10 times faster than that of hydrogen at the same pressure. As the temperature increases, both reaction rates increase very rapidly, even though the solubilities of the gases in the KOH electrolyte decrease with temperature. The activation energies for oxygen and hydrogen gas recombination are 32.6kJmol−1 and 27.0kJmol−1, respectively. The reactions rates also increase as the cells are cycled. This indicates, that the number of active sites increases, as the surface area increases, due to the continuously decrepitating of the alloy particles. The hydrogen gas absorption rate increases dramatically after a large number of cycles due the drying of the MH electrode. A hydrophobic PTFE additive in the MH electrode can significantly improve hydrogen absorption efficiency in NiMH cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.