Abstract

The binding of diatomic ligands, such as O(2), NO, and CO, to heme proteins is a process intimately related with their function. In this work, we analyzed by means of a combination of classical Molecular Dynamics (MD) and Hybrid Quantum-Classical (QM/MM) techniques the existence of multiple conformations in the distal site of heme proteins and their influence on oxygen affinity regulation. We considered two representative examples: soybean leghemoglobin (Lba) and Paramecium caudatum truncated hemoglobin (PcHb). The results presented in this work provide a molecular interpretation for the kinetic, structural, and mutational data that cannot be obtained by assuming a single distal conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call