Abstract

AbstractThe current paper deals with the performance evaluation of the application of three soft computing algorithms such as adaptive neuro-fuzzy inference system (ANFIS), backpropagation neural network (BPNN), and deep neural network (DNN) in predicting oxygen aeration efficiency (OAE20) of the gabion spillways. Besides, classical equations, namely multivariate linear and nonlinear regressions (MVLR and MVNLR), including previous studies, were also employed in predicting OAE20 of the gabion spillways. The analysis of results showed that the DNN demonstrated relatively lower error values (root mean square error, RMSE = 0.03465; mean square error, MSE = 0.00121; mean absolute error, MAE = 0.02721) and the highest value of correlation coefficient, CC = 0.9757, performed the best in predicting OAE20 of the gabion spillways; however, other applied models, such as ANFIS, BPNN, MVLR, and MVNLR, were giving comparable results evaluated to statistical appraisal metrics of the relative significance of input parameters based on sensitivity investigation, the porosity (n) of gabion materials was observed to be the most critical parameter, and gabion height (P) had the least impact over OAE20 of the spillways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.