Abstract

Oxygen-18 leaving group kinetic isotope effects (KIEs) have been measured for a set of glycosyl transfer reactions with p-nitrophenyl beta-D-glycosides as substrates. Acid-catalyzed hydrolysis and alkaline hydrolysis exhibit KIEs of K16/k18 = 1.0355 +/- 0.0015 and 1.0386 +/- 0.0032, respectively. Lysozyme and beta-glucosidase A show KIEs on Vmax/Km (V/K) of (V/KI)16/(V/K)18 = 1.0467 +/- 0.0015 and 1.0377 +/0 0.0061, respectively. The large magnitude of these KIEs requires that carbon-oxygen bond scission be far advanced in the transition states for these reactions; therefore in the transition states for the first irreversible steps in these reaction sequences, scission of the glycosidic bond must be essentially complete for the reactions catalyzed by lysozyme and beta-glucosidase A, which are thought to proceed via SN1 and SN2 mechanisms, respectively. Acid-catalyzed hydrolysis is shown to proceed through a transition state involving at least 80% C-O bond cleavage and only partially proton transfer to the leaving p-nitrophenyl oxygen atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.