Abstract

Most cytochrome P450 (P450) oxidations are considered to occur with the active oxidant being a perferryl oxygen (FeO3+, Compound I). However, a ferric peroxide (FeO2®, Compound 0) mechanism has been proposed, as well, particularly for aldehyde substrates. We investigated three of these systems, the oxidative deformylation of the model substrates citronellal, 2-phenylpropionaldehyde, and 2-methyl-2-phenylpropionaldehyde by rabbit P450 2B4, using 18O labeling. The formic acid product contained one 18O derived from 18O2, which is indicative of a dominant Compound 0 mechanism. The formic acid also contained only one 18O derived from H218O, which ruled out a Compound I mechanism. The possibility of a Baeyer-Villiger reaction was examined by using synthesized possible intermediates, but our data do not support its presence. Overall, these findings unambiguously demonstrate the role of the Compound 0 pathway in these aldehyde oxidative deformylation reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.