Abstract

Oxy-fuel combustion is a promising and relatively new technology to facilitate CO2 capture and sequestration (CCS) for power plants utilising hydrocarbon fuels. In this research experimental oxy-combustion trials and simulation are carried out by firing pulverised coal and biomass and co-firing a mixture of them in a 100 kW retrofitted oxy-combustor at Cranfield University. The parent fuels are coal (Daw Mill) and biomass cereal co-product (CCP) and experimental work was done for 100 % coal (w/w), 100 % biomass (w/w) and a blend of coal 50 % (w/w) and biomass 50 % (w/w). The recirculation flue gas (RFG) rate was set at 52 % of the total flue gas. The maximum percentage of CO2 observed was 56.7 % wet basis (73.6 % on a dry basis) when 100 % Daw Mill coal was fired. Major and minor emission species and gas temperature profiles were obtained and analysed for different fuel mixtures. A drop in the maximum temperature of more than 200 K was observed when changing the fuel from 100 % Daw Mill coal to 100 % cereal co-product biomass. Deposits formed on the ash deposition probes were also collected and analysed using the environmental scanning electron microscopy (ESEM) with energy-dispersive X-ray (EDX) technique. The high sulphur, potassium and chlorine contents detected in the ash generated using 100 % cereal co-product biomass are expected to increase the corrosion potential of these deposits. In addition, a rate-based simulation model has been developed using Aspen Plus® and experimentally validated. It is concluded that the model provides an adequate prediction for the gas composition of the flue gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.