Abstract
Oxyfuel combustion is a technology which combusts coal in oxygen and recycled flue gas, producing a carbon dioxide rich flue gas for sequestration. Oxyfuel flue gas contains trace amounts of elemental mercury, which may corrode brazed aluminium heat exchangers used in the carbon dioxide purification system. International gas vendors have tested the use of the compression system to remove other flue gas impurities such as NOx; however, the reaction mechanism of mercury and its reaction products with NOx and nitric acid formed with condensed water vapour are unclear. This study used lab scale experiments to study the absorption of gaseous elemental mercury into nitric acid and the gas phase reaction between mercury and nitrogen dioxide formed from oxidised NO at pressures up to 25bar. It was observed that mercury has limited absorption into nitric acid and may partially desorb out of solution after depressurisation. On the other hand, mercury reacted readily with nitrogen dioxide (formed from nitric oxide oxidation at high pressure) in the gas phase. These gas phase reactions from the oxidation of nitric oxide to nitrogen dioxide to the subsequent oxidation of elemental mercury by nitrogen dioxide were predicted using existing global kinetic equations. The limited absorption of gaseous elemental mercury in nitric acid and significant oxidation of gaseous elemental mercury by nitrogen dioxide suggests that the primary removal step for elemental mercury is through the gas phase reaction. Oxyfuel compression circuits should therefore allow sufficient residence time for this gas phase reaction to occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.