Abstract

Abstract In the context of CO 2 capture and storage, the oxyfuel technology provides a promising option applicable in centralised power production schemes. This technology is based on combustion with pure oxygen instead of air and the flue gas mainly consists of CO 2 and H 2 O. The work presented in this paper is focused in the application of the oxyfuel technology in a lignite-fired power plant. Significant design issues are the required extended flue gas recirculation in order to provide the ballasting effect of the absent N 2 and moderate the furnace temperatures. Therefore, a modified design of heat exchange surfaces of the oxyfuel steam boiler was formulated and was compared to a conventional air-fired boiler. A typical modern Greek air-fired power plant has been used as reference. The dominating factors that affect the dimensioning of the oxyfuel boiler are the higher radiative heat transfer – due to the high concentrations of CO 2 and H 2 O in the flue gas – and the different flue gas mass flow, compared to a conventional air-fired boiler. For the determination of the thermodynamic cycle characteristics, simulations were made with the use of a thermodynamic cycle calculation software [Stamatelopoulos GN. Calculation and optimisation of power plant thermodynamic cycles, VDI-Regulations, Series 6, Nr. 340. Braunchweig, Mechanical Engineering Department; 1996 [in German]].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.