Abstract

The preparation and properties of novel calcium aluminosilicate glasses containing both nitrogen and fluorine are reported. Nitrogen increases Young's modulus and microhardness of oxide glasses by ∼25%. However, one of the major disadvantages of the use of oxynitride glasses for high‐stiffness applications is the fact that nitrogen also increases glass viscosity. Melting temperatures of the order of ∼1700°C are required to achieve sufficiently low viscosities for glass forming and drawing processes. Fluorine substitution for oxygen in Ca–Si–Al–O–N glasses yields significant decreases in glass transition temperature and glass melting temperature as well as increasing nitrogen solubility to levels much higher than that previously reported for glasses made by melting CaO, SiO2, Si3N4, and Al2O3 powder mixtures. The important effect that N results in increased elastic modulus is not diminished by the addition of fluorine. Thus, it is possible to produce novel oxyfluoronitride glasses with a high elastic modulus but melting and working can be carried out at more conventional glass processing temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.