Abstract
BackgroundFentanyl and its structurally related compounds have emerged as the most significant contributors to opioid overdose fatalities in recent years. While there is abundant information about the pharmacological effects of fentanyl, far less is known of its more recently abused analogs. The objective of this study was to determine whether fentanyl and several fentanyl-related substances would engender oxycodone-like responding in a mouse model of oxycodone discrimination. Oxycodone was selected as the training drug due to its high selectivity for mu opioid receptors. Compounds that elicited oxycodone-like responding in this procedure would likely evoke overlapping subjective experiences. MethodsAdult male C57BL/6 mice were trained to discriminate 1.3 mg/kg oxycodone from vehicle in a food-reinforced, two-lever choice procedure. Generalization tests were conducted with fentanyl and the following fentanyl-related compounds: ocfentanil, 3-furanyl fentanyl, crotonylfentanyl, and valerylfentanyl. ResultsFentanyl and each of its analogs completely generalized to the 1.3 mg/kg oxycodone discriminative stimulus and naltrexone pretreatment significantly decreased oxycodone-like responding for each compound. Rank order potency for engendering oxycodone-appropriate responding was ocfentanil > fentanyl > 3-furanyl fentanyl ≈ crotonylfentanyl > oxycodone > valerylfentanyl. Drug doses that evoked full substitution also significantly suppressed response rates compared to vehicle. ConclusionsThese results indicate that the discriminative stimulus, and by extension, the interoceptive and subjective effects of the tested fentanyl analogs, overlap with those of oxycodone. These observations consequentially support the prediction that they would also engender the likelihood for abuse similar to oxycodone.This article is part of the Special Issue entitled ‘New Vistas in Opioid Pharmacology’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.